A ] 2 2 Ju l 1 99 8 Hermitian Positive Semidefinite Matrices Whose Entries Are 0 Or 1 in Modulus ∗

نویسنده

  • Daniel Hershkowitz
چکیده

We show that a matrix is a Hermitian positive semidefinite matrix whose nonzero entries have modulus 1 if and only if it similar to a direct sum of all 1s matrices and a 0 matrix via a unitary monomial similarity. In particular, the only such nonsingular matrix is the identity matrix and the only such irreducible matrix is similar to an all 1’s matrix by means of a unitary diagonal similarity. Our results extend earlier results of Jain and Snyder for the case in which the nonzero entries (actually) equal 1. Our methods of proof, which rely on the so called principal submatrix rank property, differ from the approach used by Jain and Snyder. ∗Research supported in part by NSF Grant DMS-942436

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permanents of Direct Products1

1. Results. It is well known [2] that if A and B are n and msquare matrices respectively then (1) det(^ ® B) = (det(A))m(det(B))» where A®B is the tensor or direct product of A and B. By taking absolute values on both sides of (1) we can rewrite the equality as (2) I det(4 B) |2 = (det(4^*))'»(det(73*P))«, where A* is the conjugate transpose of A. The main result is a direct extension of (2...

متن کامل

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

Perturbations of Diagonal Matrices by Band Random Matrices

We exhibit an explicit formula for the spectral density of a (large) random matrix which is a diagonal matrix whose spectral density converges, perturbated by the addition of a symmetric matrix with Gaussian entries and a given (small) limiting variance profile. 1. Perturbation of the spectral density of a large diagonal matrix In this paper, we consider the spectral measure of a random matrix ...

متن کامل

Determinantal Inequalities for Block Triangular Matrices

This paper presents some results that complement (2). We believe our results are of new pattern concerning determinantal inequalities. Let us fix some notation. The matrices considered here have entries from the field of complex numbers. X ′,X ,X∗ stand for transpose, (entrywise)conjugate, conjugate transpose of X , respectively. For two n -square Hermitian matrices X ,Y , we write X > Y to mea...

متن کامل

Permanents of Positive Semidefinite Hermitian Matrices

In this project, we are interested in approximating permanents of positive semidefinite Hermitian matrices. Specifically, we find conditions on positive semidefinite Hermitian matrices such that we can generalize the algorithm described in Sections 3.6 3.7 of [1] to matrices satisfying these conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998